International Baccalaureate
Baccalauréat International
Bachillerato Internacional

88117011

COMPUTER SCIENCE

HIGHER LEVEL
PAPER 1
Thursday 17 November 2011 (afternoon)
2 hours 15 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Section A: answer all the questions.
- Section B: answer all the questions.

SECTION A

Answer all the questions.

1. (a) State one advantage and one disadvantage of communication by electronic mail rather than by telephone.
(b) Outline two possible measures that prevent computers from being affected by viruses, when using electronic mail.
2. (a) State one application that uses robots.
(b) Outline two advantages of using robots rather than manual-based systems.
3. A code for representing colours is used, where each colour is stored using 8 bits.
(a) State the number of different colours that can be represented.
(b) The binary representation of a particular colour is shown below.

0	0	0	1	1	1	0	0

(i) State the decimal representation of this colour. Show all of your working.
(ii) State the hexadecimal representation of this colour.
4. (a) Define the term syntax.
(b) Define the term semantics.
(c) Describe, using examples from the code below, how each of the following types of error could occur: syntax error, logical error and run-time error.

$$
\mathrm{a}=\mathrm{b} / \mathrm{c}+\mathrm{d}
$$

5. Systems analysis, software design and program construction are all stages of the software life cycle.

Outline two other stages in the software life cycle.
6. (a) Using computer memory as an example, outline the meaning of the term volatile. [2 marks]
(b) Outline the reasons for having both primary memory and secondary memory. [2 marks]
(c) Explain why a hard disk might need to be defragmented.
7. (a) Define the term operand.
(b) Define the term operator.
(c) Convert the following infix expression into a prefix expression.

$$
a *(b+c * d)
$$

(d) Calculate the value of the following postfix expression.

$$
537+* 4-
$$

8. Define direct memory access (DMA).
9. Describe the function of the following processor components.
$\begin{array}{ll}\text { (a) accumulator } & {[2 \text { marks }]} \\ \text { (b) program counter } & {[2 \text { marks] }}\end{array}$
10. Consider the following binary search tree.

Draw the resulting binary search tree after
(a) deleting H from the initial tree; [1 mark]
(b) deleting C from the initial tree;
(c) deleting E from the initial tree.

SECTION B

Answer all the questions.

11. Consider the array and algorithm shown below.

```
for (int index = 4; index > 0; index = index - 1)
{
    int j = index;
    for (int i = index - 1; i >= 0; i = i - 1)
    {
        if (A[i] < A[j])
        { j = i; }
    }
    if (j != index)
    {
        double w = A[j];
        A[j] = A[index];
        A[index] = w;
    }
}
```

(a) Outline the operation of the outer for loop.
(b) Analyse the efficiency of the algorithm in terms of BigO notation.
(c) Identify, by tracing the algorithm or otherwise, the contents of the array A after each execution of the outer loop.
(d) State the purpose of the algorithm.
12. A program accesses a text file on disk. To edit the text the user of the program enters data using a keyboard. The program then amends the text which was read from the file, writes the updated file back to disk and produces a printed report of all amendments made to the text file.
(a) Construct a systems flowchart representing this process.

The data on disk can be lost due to various errors.
(b) (i) State two examples of how data can be lost due to human error.
(ii) State two examples of how data can be lost other than by human error.
(iii) Describe how data lost from disk could be recovered.
13. (a) State two problems associated with the use of images, that have large file sizes, in computer systems.
(b) One photograph is estimated to occupy 2000 KB . Outline the steps needed to calculate the number of gigabytes (GB) required for 50000 photographs.
(c) Outline one advantage of using data compression software on stored images.
(d) Discuss the ethical considerations linked to the misuse of image processing software.
14. A garage uses a computer system to test whether the amount of exhaust fumes emitted by a car is at an acceptable level.

A sensor, used to measure exhaust fumes, is placed in the exhaust pipe.
(a) Outline the processing taking place in this computer system.
(b) Explain why the sensor data needs to be converted before being processed.
(c) Outline three errors that can occur in this system.
(d) Identify one appropriate output device for this system.
15. (a) Determine the value of the following expression, where $\mathrm{A}=$ true and $\mathrm{B}=$ false.

Show each step of your working.

$$
\overline{A+B}+B \cdot A
$$

(b) Consider the following logic circuit.

State the Boolean expression in terms of inputs A, B and C for output
(i) W ;
[1 mark]
(ii) Y ;
[1 mark]
(iii) Z ;
[1 mark]
(iv) X .
[1 mark]
(c) Consider the following truth table.

A	B	C	E
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

(i) Express the Boolean expression for output E from the above truth table.
(ii) Simplify the expression.
16. Consider the following Java class.

```
public class Point
{
    // point in the Cartesian plane
    private double x, y;
    public Point(double x, double y)
    {
        this.x = x;
        this.y = y;
    }
    public double getX() { return this.x; }
    public double getY() { return this.y; }
    public boolean isEqualTo(Point P)
    {
        return (this.x == P.getX() && this.y == P.getY());
    }
    public void showPoint()
    {
        output ("(" + this.x + ", " + this.y + ")");
    }
}
```

(a) Outline two features of classes.
(b) Outline the relationship between a class and an object.
(c) Consider the following code.

```
Point A = new Point(5, 7);
Point B = new Point(3, 0);
A.showPoint();
B.showPoint();
if (A.isEqualTo(B))
{
        output("are the same points");
}
else
{
    output("are different points");
}
```

Explain line by line, how the output below is produced.

```
(5, 7)
(3, 0)
are different points
```

